437 research outputs found

    On the Grothendieck Theorem for jointly completely bounded bilinear forms

    Full text link
    We show how the proof of the Grothendieck Theorem for jointly completely bounded bilinear forms on C*-algebras by Haagerup and Musat can be modified in such a way that the method of proof is essentially C*-algebraic. To this purpose, we use Cuntz algebras rather than type III factors. Furthermore, we show that the best constant in Blecher's inequality is strictly greater than one.Comment: 9 pages, minor change

    Quantum Steering and Space-Like Separation

    Get PDF
    In non-relativistic quantum mechanics, measurements performed by separate observers are modeled via tensor products. In Algebraic Quantum Field Theory, though, local observables corresponding to space-like separated parties are just required to commute. The problem of determining whether these two definitions of "separation" lead to the same set of bipartite correlations is known in non-locality as Tsirelson's problem. In this article, we prove that the analog of Tsirelson's problem in steering scenarios is false. That is, there exists a steering inequality that can be violated or not depending on how we define space-like separation at the operator level.Comment: Some typos corrected. Short discussion about Algebraic Quantum Field Theory. Modified introduction and conclusio

    The Kt-Functional for the Interpolation Couple L1(A0), L∞(A1)

    Get PDF
    AbstractLet (A0, A1) be a compatible couple of Banach spaces in the interpolation theory sense. We give a formula for the Kt-functional of the interpolation couples (l1(A0), c0(A1)) or (l1(A0), l∞(A1)) and (L1(A0), L∞(A1))

    Matrix Product State and mean field solutions for one-dimensional systems can be found efficiently

    Get PDF
    We consider the problem of approximating ground states of one-dimensional quantum systems within the two most common variational ansatzes, namely the mean field ansatz and Matrix Product States. We show that both for mean field and for Matrix Product States of fixed bond dimension, the optimal solutions can be found in a way which is provably efficient (i.e., scales polynomially). This implies that the corresponding variational methods can be in principle recast in a way which scales provably polynomially. Moreover, our findings imply that ground states of one-dimensional commuting Hamiltonians can be found efficiently.Comment: 5 pages; v2: accepted version, Journal-ref adde

    Tsirelson's problem and Kirchberg's conjecture

    Full text link
    Tsirelson's problem asks whether the set of nonlocal quantum correlations with a tensor product structure for the Hilbert space coincides with the one where only commutativity between observables located at different sites is assumed. Here it is shown that Kirchberg's QWEP conjecture on tensor products of C*-algebras would imply a positive answer to this question for all bipartite scenarios. This remains true also if one considers not only spatial correlations, but also spatiotemporal correlations, where each party is allowed to apply their measurements in temporal succession; we provide an example of a state together with observables such that ordinary spatial correlations are local, while the spatiotemporal correlations reveal nonlocality. Moreover, we find an extended version of Tsirelson's problem which, for each nontrivial Bell scenario, is equivalent to the QWEP conjecture. This extended version can be conveniently formulated in terms of steering the system of a third party. Finally, a comprehensive mathematical appendix offers background material on complete positivity, tensor products of C*-algebras, group C*-algebras, and some simple reformulations of the QWEP conjecture.Comment: 57 pages, to appear in Rev. Math. Phy

    Phase transitions for random states and a semi-circle law for the partial transpose

    Full text link
    For a system of N identical particles in a random pure state, there is a threshold k_0 = k_0(N) ~ N/5 such that two subsystems of k particles each typically share entanglement if k > k_0, and typically do not share entanglement if k < k_0. By "random" we mean here "uniformly distributed on the sphere of the corresponding Hilbert space." The analogous phase transition for the positive partial transpose (PPT) property can be described even more precisely. For example, for N qubits the two subsystems of size k are typically in a PPT state if k k_1. Since, for a given state of the entire system, the induced state of a subsystem is given by the partial trace, the above facts can be rephrased as properties of random induced states. An important step in the analysis depends on identifying the asymptotic spectral density of the partial transposes of such random induced states, a result which is interesting in its own right.Comment: 5 pages, 2 figures. This short note contains a high-level overview of two long and technical papers, arXiv:1011.0275 and arXiv:1106.2264. Version 2: unchanged results, editorial changes, added reference, close to the published articl

    More efficient Bell inequalities for Werner states

    Full text link
    In this paper we study the nonlocal properties of two-qubit Werner states parameterized by the visibility parameter 0<p<1. New family of Bell inequalities are constructed which prove the two-qubit Werner states to be nonlocal for the parameter range 0.7056<p<1. This is slightly wider than the range 0.7071<p<1, corresponding to the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. This answers a question posed by Gisin in the positive, i.e., there exist Bell inequalities which are more efficient than the CHSH inequality in the sense that they are violated by a wider range of two-qubit Werner states.Comment: 7 pages, 1 figur

    Volumes of Restricted Minkowski Sums and the Free Analogue of the Entropy Power Inequality

    Full text link
    In noncommutative probability theory independence can be based on free products instead of tensor products. This yields a highly noncommutative theory: free probability . Here we show that the classical Shannon's entropy power inequality has a counterpart for the free analogue of entropy . The free entropy (introduced recently by the second named author), consistently with Boltzmann's formula S=klog⁥WS=k\log W, was defined via volumes of matricial microstates. Proving the free entropy power inequality naturally becomes a geometric question. Restricting the Minkowski sum of two sets means to specify the set of pairs of points which will be added. The relevant inequality, which holds when the set of "addable" points is sufficiently large, differs from the Brunn-Minkowski inequality by having the exponent 1/n1/n replaced by 2/n2/n. Its proof uses the rearrangement inequality of Brascamp-Lieb-L\"uttinger

    Amenability of algebras of approximable operators

    Get PDF
    We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelson's space.Comment: 20 pages, to appear in Israel Journal of Mathematic

    Noncommutative Figa-Talamanca-Herz algebras for Schur multipliers

    Full text link
    We introduce a noncommutative analogue of the Fig\'a-Talamanca-Herz algebra Ap(G)A_p(G) on the natural predual of the operator space Mp,cb\frak{M}_{p,cb} of completely bounded Schur multipliers on Schatten space SpS_p. We determine the isometric Schur multipliers and prove that the space Mp\frak{M}_{p} of bounded Schur multipliers on Schatten space SpS_p is the closure in the weak operator topology of the span of isometric multipliers.Comment: 24 pages; corrected typo
    • 

    corecore